Skip to main content

Automating some AWS tasks

Managing and monitoring EC2 instances with the AWS console in browser is easy, but can involve a lot of clicking. Sometimes a command line is simply more efficient. The AWS CLI is great for managing EC2 instances and other stuff, but it can be annoying as most things need instance ids rather than human-friendly names. I've implemented some tools to simplify this by allowing me to reference things by their name.

These tools are implemented in Python, using boto3 and can be found on Github: https://github.com/ccpgames/aws-tools

Running bots for load testing is one example of a task where automation helps a great deal. I have scripts to create a number of machines, upload a tarball, extracting its contents and running a command. Once the command finishes the machines can be terminated.

I'm sometimes juggling a fair number of machines, and while each running instance is fairly cheap, things can add up, especially if I leave machines running idle just because I forgot to stop (or terminate) them. The list-machines script shows me a quick overview of all machines on my account.

I'll be adding tools to this collection as the need arises - feedback and contributions are welcome!

Comments

Popular posts from this blog

Large scale ambitions

Learning new things is important for every developer. I've mentioned  this before, and in the spirit of doing just that, I've started a somewhat ambitious project. I want to do a large-scale simulation, using  Elixir  and Go , coupled with a physics simulation in C++. I've never done anything in Elixir before, and only played a little bit with Go, but I figure,  how hard can it be ? Exsim I've dubbed this project exsim - it's a simulation done in Elixir. Someday I'll think about a more catchy name - for now I'm just focusing on the technical bits. Here's an overview of the system as I see it today: exsim  sits at the heart of it - this is the main server, implemented in Elixir. exsim-physics  is the physics simulation. It is implemented in C++, using the Bullet physics library. exsim-physics-viewer  is a simple viewer for the state of the physics simulation, written in Go. exsim-bot  is a bot for testing exsim, written in Go.

Working with Xmpp in Python

Xmpp is an open standard for messaging and presence, used for instant messaging systems. It is also used for chat systems in several games, most notably League of Legends made by Riot Games. Xmpp is an xml based protocol. Normally you work with xml documents - with Xmpp you work with a stream of xml elements, or stanzas - see https://tools.ietf.org/html/rfc3920 for the full definitions of these concepts. This has some implications on how best to work with the xml. To experiment with Xmpp, let's start by installing a chat server based on Xmpp and start interacting with it. For my purposes I've chosen Prosody - it's nice and simple to install, especially on macOS with Homebrew : brew tap prosody/prosody brew install prosody Start the server with prosodyctl - you may need to edit the configuration file (/usr/local/etc/prosody/prosody.cfg.lua on the Mac), adding entries for prosody_user and pidfile. Once the server is up and running we can start poking at it

Mnesia queries

I've added search and trim to my  expiring records  module in Erlang. This started out as an  in-memory  key/value store, that I then migrated over to  using Mnesia  and eventually to a  replicated Mnesia  table. The  fetch/1  function is already doing a simple query, with  match_object . Result = mnesia : match_object ( expiring_records , # record { key = Key , value = '_' , expires_at = '_' }, read ) The three parameters there are the name of the table -  expiring_records , the matching pattern and the lock type (read lock). The  fetch/1  function looks up the key as it was added to the table with  store/3 . If the key is a tuple, we can also do a partial match: Result = mnesia : match_object ( expiring_records , # record { key = { '_' , " bongo " }, value = '_' , expires_at = '_' }, read ) I've added a  search/1  function the module that takes in a matching pattern and returns a list of items wh